

TECHNICAL PAPER

Use of Common Media Client and Server Data to
Improve Streaming Playback Performance

By Ali C. Begen, Yasser Syed, and Alex Giladi

Introdugao:

O artigo desta edigao trata da importancia de melhorar a performance de reprodugéo de videos em streaming, especialmente com a
crescente demanda por servigos de baixa laténcia e mais recentemente videos em 4K. O estudo destaca que os servigos competem por
largura de banda, o que pode gerar rebufferings (interrupgdes de reprodugdo).

Para enfrentar esses problemas s&o usados dois padrées: Common Media Client Data (CMCD), que permite que os receptores informem

ao servidor seu status de buffer, ajudando assim a distribuir melhor sua capacidade entre os clientes, o que reduz as interrupgdes. Ja o
CMSD (Common Media Server Data) propde que o servidor adie as respostas a receptores com buffer suficiente, priorizando aqueles
com buffers baixos. Os testes indicam que, com essas implementagdes, a duragdo média de rebuffering foi reduzida em até 56% sem
comprometer a qualidade do video. Como fazer isso? Bord para a leitura do artigo na integra. Boa leitura.

Tom Jones Moreira

Abstract

Smooth playback is critical for any streaming service.
Naturally, viewers do not enjoy rebuffering events, but
less frequent and shorter ones are preferred when they can-
not be avoided. However, ensuring smoother playback
becomes movre challenging as more demanding types of ser-
vices such as low-latency live (LLL) and 4K streaming
become increasingly used. It has been shown many times
that adaprive streaming cli-
ents compete with each other for
available bandwidith and server
capacity. The server’s priority
n responding to the individual
requests sent by these clients
should be based on the clients’
nme-varying playback buffer
conditions. In an earlier article,
we presented that the server could
wisely allocate its ourput capacity
among the tncoming requests and
largely mitigate the rebufferings
suffered by the clients, provided
that the clients informed the
server abour thewr buffer staruses
using the Common Media Client
Data (CMCD) standard. In a
more recent study, we developed an alternative solution to
the same problem using the Common Media Server Data
(CMSD) standard. In this solution, the server’s response to
a request that indicated a sufficient buffer level was delayed
until the requests that indicated an insufficient buffer level
were handled. The server atrached a new CMSD param-
eter to the eventual response disclosing the length of the
delay. This parameter aveoided misinterpreration and the
subsequent incorrect decision by the client’s rate-adapration
logic. Our experiments (for which we offer the source code)
showed that the proposed CMSD parameter eliminared
unnecessary rate shifting to lower bitrates while reducing
the rebuffering rate as well as the rebuffering duration. This

It has been shown many times that
adaptive streaming clients compete
with each other for the available
bandwidth and server capacity. The
server’s priority in responding to

individual client requests should be
based on clients’ time-varying
playback buffer conditions to avoid
playback freezes happening in as few
clients as possible.

article summarizes these findings and illustrates other envi-
stoned use cases for the CMSD standard.

Keywords

Adaptive streaming, adaptive bitrate (ABR), Com-
mon Media Client Data (CMCD), Conmunon Media
Server Data (CMSD), content delivery network (CDN),
Dynamic Adaptive Streaming over HTTP (DASH),
HTTP Live Streaming (HLS), server/network assistance.

Introduction

n the early days of Hyp-
tertext Transfer Protocol
(HTTP) adaptive stream-
ing, the content delivery
network (CDN) providers did
not envision HTTP servers com-
municating with streaming cli-
ents to enhance user experience
or the overall system’s delivery
performance. The idea of coop-
erating servers, clients, and other
network elements first took off in
2013! and became an MPEG
standard? in 2017.

Although this standard had
numerous useful applications, the industry had not
shown enough interest in it since its publication. Then,
in 2019, the WAVE project participants at the Consumer
Technology Association (CTA) started working on a
solution to a long-standing issue: how could a streaming
client send media-, playback-, and session-related infor-
mation to the CDN, such as type, duration, and format
of a media segment, content ID, session ID, current buf-
fer length, and current latency. The CDN could use this
information to bind individual requests to streaming ses-
sions and combine server and client logs to generate pre-
cise dashboard metrics showing delivery performance,
specific player issues, and viewer experience. A similar
issue that could be met through this method of passed
information is how a streaming client could ask for a pri-
ority service when requesting a segment.

In September 2020, CTA published the Common
Media Client Data (CMCD) specification.’ Several

Aggregated
Analytics

Media
Qrigination

Clients

CDN Servers

Encoding and Packaging

CDN Servers

L1

—> Media ———> CMCD

CMSD

Client analytcs —— CDN logs

FIGURE 1. Streaming clients cooperating with the CDN servers through CMCD/CMSD (repurposed from Ref. 1).

early adopters from CDN providers and streaming
client vendors immediately implemented this specifi-
cation. For example, the dash.js reference client* has
been fully compliant with CMCD since v3.2.1 (early
2021). Open-source libraries for other popular clients
(e.g., hls.js and ExoPlayer) were made available. The
first evaluation results and capability demonstrations
(e.g., Refs. 5 and 6) came out soon after, and further
studies are currently in progress. Readers interested in
further details are referred to Ref. 1 for the timeline
of the developments in this space and Ref. 7 for the
detailed use cases of CMCD.

During the development of the CMCD specification,
a proposal was made to send meta information and hints
from the CDN servers to the streaming clients, simi-
lar to the capabilities provided in Ref. 2. The proposal
led to the creation of a companion standard to CMCD,
called Common Media Server Data (CMSD), which was
finalized in late 2022.® Figure 1 illustrates an end-to-
end media distribution system with CDN servers and
streaming clients enabled to use CMCD and CMSD.

It has been shown many times that adaptive stream-
ing clients compete with each other for available band-
width and server capacity.”!? To avoid playback freezes
as much as possible, the server’s priority in responding
to individual client requests should be based on clients’
time-varying playback buffer conditions.

Previously, we designed a buffer-aware bandwidth
allocation algorithm for the server, which scheduled
the response for each incoming segment request based
on the (playback) buffer level reported using CMCD.
Based on this algorithm, the server allocated its output
capacity among all the requests more wisely, which then
significantly reduced the rebufferings experienced by
the clients.’

In a later study,” we developed an alternative solu-
tion to the same problem using the (draft) CMSD

1

standard. In this solution, the response to a request
that indicated a sufficient buffer level was to be delayed
until the requests that indicated an insufficient buffer
level were handled. The server attached a new CMSD
parameter to the eventual response disclosing the length
of the delay. This parameter avoided misinterpretation
and the subsequent incorrect decision by the client’s
rate-adaptation logic. Qur experiments (for which we
offer the source code) showed that the proposed CMSD
parameter eliminated unnecessary rate shifting to lower
bitrates while reducing the rebuffering rate as well as
the rebuffering duration. Specifically, we tested the
proposed idea in different multi-client scenarios [a mix
of video-on-demand (VoD) and low-latency live (LLL)
streaming clients and 10—20 clients in total]. The results
showed that the average rebuffering duration decreased
by 33%-56% without degrading the video quality.

In this article, we summarize the main findings from
these studies and illustrate other envisioned use cases
for the CMSD standard.

Results Using the CMCD Standard

Test Setup

The test setup is given in Figure 2. On the client side,
severalinstances of the dash.js client running the default
ABR scheme (termed dynamic) were used. The desired
network behavior was achieved using a tc-NetEm net-
work emulator,’ which throttled the total bandwidth
available to the clients according to the Cascade and
Spike bandwidth profiles defined by the DASH-IF. On
the server side, an NGINX server'! with the JavaScript
(NJS) module was used as the HTTP server. An NJS
middleware application was developed to implement the
bandwidth allocation functionality. The server hosted

‘https://wikilinuxfoundation.org/networking/metem

Thurp:/nginx.org/en/download.himl

Puppeteer

NetEm

CMCD-aware Clients
(dash.js)

3
y
g

NGINX

Bandwidth
Allocation)

CMCD-aware Server (NGINX)

FIGURE 2. Implemented CMCD-aware system.>'

the test content for testing on-demand and live video
sessions. Further detailed information about the test
setup can be found in Ref. 5, and the public source code
is available in Ref. 12.

Results

The tests were repeated five times and the metrics shown
in Table 1 were used. We compared using CMCD
with the buffer-aware bandwidth allocation algorithm
against not using CMCD.

Metric Definition Unit
Avg. BR Average bitrate across all clients Mbit/s
Min. BR Average bitrate for the client that Mbit/s

consumed the lowest average bitrate
Avg. RD Average total rebuffering duration seconds
across all clients
Max. RD Total rebuffering duration for the seconds
client that suffered from the longest
rebuffering duration
Avg. RC Average rebuffering count across all | -
clients
Avg. SC Average bitrate switching count -
across all clients
Avg. LL Average live latency across all clients | seconds
Max. LL Average live latency for the client that | seconds
experienced the longest live latency

On-Demand Video Sessions with 10 Clients

Table 2 shows that running the buffer-aware band-
width allocation algorithm reduced Avg. RD, Max. RD,
and Avg. RC substantially for both bandwidth profiles.
Specifically, the reductions were as follows: Avg. RD by
74% and 83%, Max. RD by 72% and 78%, and Avg. RC
by 57% and 66% for the Cascade and Spike bandwidth
profiles, respectively. These reductions came at the cost

CascadeX10 SpikeX10
Metric w/ CMCD | w/o CMCD | w/CMCD | w/o CMCD
Avg. BR | 3.13 3.33 2.61 3.20
Min. BR | 2.90 3.12 2.30 2.68
Avg. RD | 5.36 20.84 12.43 71.90
Max. RD | 10.72 38.84 18.49 83.54
Avg. RC | 4.72 11.04 8.68 25.48
Avg. SC | 35.80 36.70 4914 53.90

of a nonnegligible (but much less significant) reduction
in Avg. BR.

The buffer-aware bandwidth allocation algorithm
computes a fair share for each client (based on the buf-
fer level reported through CMCD). The bandwidth
allocated by the server implicitly controls the deci-
sions taken by the client-side ABR scheme. Thanks to
this algorithm, Avg. SC was also reduced. The results
in Table 2 are for the clients that set their minimum
and maximum buffer levels to four and eight seconds,
respectively. We observed that when we tripled these
levels, the percentage of improvement was smaller
since the larger playback buffer size provided more
robustness against the bandwidth drops and reduced
the chances of rebuffering.

LLL Video Sessions with Five Clients

The clients set their minimum and maximum buffer lev-
els in these tests to one and three seconds, respectively.
The target latency was also set to three seconds. The
results are given in Table 3, where we see that CMCD-
enabled clients achieved a reduction in Avg. RD of 20%
and 26%, in Max. RD of 25% and 22%, and in Avg. RC
of 36% and 21% for the Cascade and Spike bandwidth
profiles, respectively.

CascadeX5 SpikeX5
Metric w/ CMCD | w/o CMCD | w/CMCD | w/o CMCD
Avg. BR 0.44 0.21 0.21 0.20
Min. BR 0.37 0.21 0.20 0.20
Avg. RD | 3.56 4.45 3.62 4.9
Max. RD | 3.87 516 4.27 5.44
Avg. RC 10.50 16.50 13.25 16.75
Avg.SC |[21.75 18.00 5.75 3.25
Avg. LL 2.34 2.75 2.28 2.31
Max. LL | 2.91 3.38 2.30 3.35
Moreover, enabling CMCD helped the clients

achieve a live latency below the target (three seconds)
without any violations. On the other hand, Max. LL
surpassed the target value when CMCD was disabled.
Interestingly, we also saw an increase in Avg. BR by
110% for the CMCD-enabled clients during the testing
with the Cascade bandwidth profile. This was because
the CMCD-enabled clients rebuffered less and this
helped them request more segments from high-bitrate
representations.

Results Using the CMSD Standard

Test Setup

The test setup is given in Figure 3. On the client
side, several instances of the dash.js client running a
throughput-based ABR scheme (abrThroughput.js)
were used. The desired network behavior was achieved
using a tc-NetEm network emulator, which throttled
the total bandwidth available to the clients according
to the scaled Cascade bandwidth profile. On the server
side, an NGINX server with the JavaScript (N]S)
module ran the HTTP server and an NJS middleware
application implementing the scheduler for the outgo-
ing responses. The server hosted the test content for
testing on-demand and live video sessions. Further
detailed information about the test setup can be found
in Ref. 11, and the public source code is available in
Ref. 13.

Results
The following test cases were run five times and the
results were averaged. We compared CMSD with
scheduling against no CMSD or scheduling using the
same metrics from the previous section.
The two test cases were as follows:
(i) 10 VoD streaming clients under the CascadeX10
bandwidth profile and
(ii)) 10 VoD streaming and 10 LLL streaming clients
under the CascadeX20 bandwidth profile,
where the minimum and maximum buffer levels were
set to four and 20 seconds, respectively, for the VoD

Response
Scheduling)

NJS App

\

CMCD and CMSD-aware Server (NGINX)

NetEm

I's Y

===2dash.js

\ J

CMCD and CMSD-aware Clients
(dash.js)

1,13

FIGURE 3. Implemented CMSD-aware system.

CascadeX10 CascadeX20
Metric w/CMSD | w/o CMSD | w/ CMSD | w/o CMSD
Avg. BR | 3.46 3.55 3.20 3.26
Min. BR | 3.15 3.27 2.45 2.59
Avg. RD | 3.52 5.26 0.51 1.16
Max. RD | 15.0 14.5 415 8.21
Avg. RC | 1.52 218 0.40 0.55

clients and to two and six seconds, respectively, for the
LLL clients.

The results shown in Table 4 indicate that if the
server ran the response scheduling algorithm and
signaled any extra delay introduced to the client, it
could reduce Avg. RD by 33% and 56% and Avg. RC by
30% and 27% for test cases (i) and (ii), respectively. At
the same time, the reduction in Avg. BR was limited to
a mere 2%. Overall, the response scheduling algorithm

@ SMPTE

kept the average bitrate (quality) more or less unchanged
even as it added a delay to segment downloads since the
delay was signaled to the client using CMSD, and this
delay was accounted for in the throughput calculations
on the client side.

Further Use Cases for the CMSD Standard

CMSD can help in many ways. For example:

m Clients may frequently upshift and downshift."* This
instability can be avoided using CMSD hints.

m CMSD can let clients know about server-side band-
width measurements.

m Clients typically start fetching the lowest-bitrate
segments due to the lack of knowledge of the net-
work conditions. An edge server may know the
available bandwidth a client has and can signal this
value to the client.

m Caching capacity is always a limited resource. Thus,
not all segments for all the representations can be
cached on every server. Adaptive streaming clients
can get confused if some of the objects requested are
served from a nearby cache and others from a dis-
tant server.!” CMSD can also help in this case by
sending caching indications to let clients know what
is cached or not. This way, clients can make more
informed decisions.

m Clients might erroneously downshift due to the
increase in download times because of a cache miss.
Such clients could be informed via CMSD and they
might decide not to downshift.

® In LLL streaming, CMSD can hint clients about the
latest (live-edge) segment.

m CMSD can assist clients in viewing the content in a
synchronized fashion.

Other use cases are also exemplified in Ref. 11.

Conclusion

The goal of the published CMCD and CMSD speci-
fications is to improve cooperation between adaptive
streaming clients and CDN servers to enhance stream-
ing performance. Validating the use cases is vital to
promote wider adoption. In this work, we summarized
the main findings from two recent studies. The results
showed that even a basic implementation benefiting
from CMCD and CMSD could reduce the average
duration and count of rebuffering without discernible
loss of video quality.

References

1. A. C. Begen, “Manus Manum Lavat: Media Clients and
Servers Cooperating With Common Media Client/Server
Data,” ACM Appl. Netw. Res. Workshop (ANRW), 2021, doi:
10.1145/3472305.3472886.

2. International Organization for Standardization/International
Electrotechnical (ISO/IEC) 23009-5:2017,
“Information Technology—Dynamic Adaptive Streaming Over
HTTP (DASH)—DPart 5: Server and Network Assisted DASH

Commission

(SAND).” Accessed: Sept. 10, 2022. [Online]. Available: https:/
www.iso.org/standard/69079.html

3. Consumer Technology Association, “CTA-5004: Web
Application Video Ecosystem—Common Media Client Data,”
Sept. 2020.

4. DASH-IF, “DASH Reference Client.” Accessed: Sept. 10,
2022. [Online]. Available: https://reference.dashif.org/dash.js/

5. A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen,
and R. Zimmermann, “Common Media Client Data
(CMCD): Initial Findings,” ACM NOSSDAV, 2021, doi:
10.1145/3458306.3461444.

6. S. Pham, M. Avelino, D. Silhavy, T.-S. An, and S. Arbanowski,
“Standards-Based Streaming Analytics and Its Visualization,”
ACM MMSys, 2021.

7. A.C.Begen,A.Bentaleb,D. Silhavy,S.Pham,R. Zimmermann,
and W. Law, “Road to Salvation: Streaming Clients and Content
Delivery Networks Working Together,” IEEE Commun. Mag.,
59(11):123-128, 2021, doi: 10.1109/MCOM.121.2100137.
Technology Association, “CTA-5006: Web
Application Video Ecosystem—Common Media Server Data,”
Nov. 2022.

9. S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C.
Dovrolis, “What Happens When HTTP Adaptive Streaming
Players Compete for Bandwidth?,” ACM NOSSDAV, 2012, doi:
10.1145/2229087.2229092.

10. A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and
R. Zimmermann, “A Survey on Bitrate Adaptation Schemes
for Streaming Media Over HTTP,” IEEE Commun. Surveys
Turs., 21(1):562-585, Firstquarter 2019, doi: 10.1109/
COMST.2018.2862938.

11. M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R.
Zimmermann, “The Benefits of Server Hinting When DASHing
or HLSing,” ACM MHV, 2022, doi: 10.1145/3510450.3517317.
12. NUS-0zU,“CMCD-DASH.” Accessed: Sept. 10,2022. [Online].
Available: https:/github.com/NUStreaming/CMCD-DASH

13. NUS-0zU, “CMSD-DASH.” Accessed: Sept. 10,2022. [Online].
Available: https:/github.com/NUStreaming/CMSD-DASH

14. S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C.
Begen, “Server-Based Traffic Shaping for Stabilizing Oscillating
Adaptive Streaming Players,” ACM NOSSDAV, 2013, doi:
10.1145/2460782.2460786.

15. D. H. Lee, C. Dovrolis, and A. C. Begen, “Cachingin HTTP
Adaptive Streaming: Friend or Foe?,” ACM NOSSDAV, 2014, doi:
10.1145/2597176.2578270.

8. Consumer

About the Authors

Ali C. Begen is currently a com-
7 i puter science professor at Ozyegin
University, Istanbul, Turkiye,
and a technical consultant with
Comcast’s Advanced Technology
and Standards Group. Previously,
he was a research and development
engineer at Cisco. He received
a PhD in electrical and com-
puter engineering from Georgia
Tech in 2006. To date, he has received several academic
and industry awards (including an Emmy Award for

4

Technology and Engineering) and was granted over 30
US patents. In 2020 and 2021, he was listed among the
world’s most influential scientists in the subfield of net-
working and telecommunications. More details are at
https://ali.begen.net.

Yasser Syed is a distinguished
architect at Comcast, whose work
focuses on developing and imple-
menting next-generation video
technologies and workflows. He
received a PhD in electrical engi-
neering from the University of
Texas at Arlington. He has contrib-

. 4 uted a substantial amount of con-
tent and effort to many video standards-related areas.
Currently, he chairs the Society of Cable Telecommuni-
cations Engineers (SCTE) Working Group 7 (WG7) on
DASH/adaptive streaming and also leads its Advanced
Coding Technologies group, which created the high-
dynamic-range (HDR) application and next-generation
codec constraint specifications for the cable industry. He
is also a 2021 recipient of the SCTE award for excellence
in standards.

Alex Giladiis a Comcast fellow and
an Emmy-winning technologist. He
has been working on issues related
to video content encoding and dis-
tribution since 2000. His current
areas of interest are video encoding
and adaptive streaming. He cur-
rently leads an advanced technolo-
gies group within Comcast. Prior

SMPTE @

to Comcast, he worked on various aspects video trans-
port and video coding in InterDigital, Huawei, Vubiquity,
Digital Fountain, and Harmonic. He has been a prolific
contributor to the MPEG-DASH standard and served as
an editor of several standards and amendments related to
DASH, content security, and MPEG-2 Systems. He is the
vice president of the DASH Industry Forum since 2019.
He is the founder and co-organizer of the popular Mile-
High Video annual conference series held in Denver, CO,
since 2017. He holds an MSEE degree from Stanford
University, Stanford, CA, and a BSc degree from Tech-
nion, Haifa, Israel. He is a senior member of the IEEE and
holds more than 50 U.S. patents.

SMIPTE

9

' SMPTE

FOR A
CHANGE

Keeps our members current and connected in
industry, standards, education, engineering, and
global media technology.

