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APPLICATIONS/PRACTICES

Understanding Banding—Perceptual
Modeling and Machine Learning Approaches

By Hojatollah Yeganeh, Kai Zeng, and Zhou Wang

Introdugao:

0 efeito Banding é um artefato visual irritante que frequentemente aparece em varias etapas ao longo da cadeia de
aquisi¢ao de video, produgao, distribui¢ao e exibigao. Com a crescente popularidade do contetido de Ultra Definigao (UHD),
esse efeito tem recebido atengdo cada vez maior devido ao seu forte impacto negativo na experiéncia do espectador.
Neste artigo vamos ver dois tipos de estruturas para detectar o Banding, o primeiro é orientado pelo conhecimento e
é construido com base em modelos computacionais que levam em consideragao as caracteristicas do sistema visual
humano (SVH), ja o segundo é orientado por dados e baseia-se em métodos de aprendizado de maquina através do
treinamento de Redes Neurais Profundas (DNNs). Confesso que gostei muito mais da primeira abordagem, nao é por
gue esta na moda, que vamos abandonar o certo pelo duvidoso. Mas e vocé, qual sistema prefere? Leia o artigo e vamos
debater mais sobre esse assunto, escreva-me: tvdigitalbr@gmail.com

Tom Jones Moreira

Abstract
Banding is an annoying visual arnifact that frequently appears
at various stages along the chain of video acquisition, produc-
tion, distribution, and display. With the thriving popularity of
ultrahigh definition (UHD), high-dynamic range (HDR), wide-
color-gamut (WCG) content, and the increasing user expectations
that follow, the banding effect has been artracting increased atten-
tion for irs Strong negative impact on viewer experience in visual
content that would otherwise have nearly perfect qualiry. Here, we
present two different types of frame-
works to detect the banding artifact.
The first is knowledge-driven and
is bualr upon computational models
that account for the characteristics
of the human visual system (HVS),
the content acquisition, production,
distribution, and display processes,
and the interplay berween them. The
second is dara-driven and is based on
machine learning methods, by train-
ing deep neural networks (DNNs)
with large-scale datasets.
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Introduction

anding is a visual arti-
fact that appears fre-
quently at many stages
in video acquisition,

production, distribution, and display systems. Banding
typically appears as perceived discontinuities or false con-
tours in large and smooth image regions of slow color or
intensity gradients. An example is given in Fig. 1, where
a severe banding effect is observed in the sky. Although

BNSMPTE

Significant effort has been made over
the years on removing or reducing
banding effects in video distributions.
Depending on where these banding
reduction techniques are applied, they
may be classified into preprocessing,
postprocessing, and banding-aware
encoding methods. However, without
having a reliable objective measure to
detect banding, improving dithering or
debanding efforts are quite
cumbersome and directionless.
Therefore, the industry is in urgent need
of innovative approaches that are able
to detect, control, and remove/reduce
banding in an automated fashion.

heavy video compression is a potential source of banding,
banding may also occur in the absence of any lossy com-
pression and may create annoying visual quality degrada-
tions in otherwise pristine quality images or video content.
What often frustrates many industrial practitioners is
that simply increasing the bit-depth or bitrate of a video
does not necessarily lead to the removal or even reduction
of banding. Indeed, with the recent accelerated growth of
ultrahigh-definition (UHD), high dynamic range (HDR),
wide-color-gamut (WCG) con-

distribution
services, and consumer dis-
play devices, severe banding
occurs even more frequently
than before and the visual effect

tent production,

is often much stronger. This
is because UHD/HDR/WCG
content typically covers a wider
range of luminance levels and
color variations than those of the
traditional standard dynamic
range (SDR) content. This,
together with the limited and
varying capabilities of display
devices, creates major challenges
to maintain smooth visual tran-
sitions simultaneously across all
luminance levels and color varia-
tions. Significant effort has been
made over the years on remov-
ing or reducing banding effects
in video distributions. Depend-
ing on where these banding
reduction techniques are applied, they may be classified
into preprocessing, post-processing, and banding-aware
encoding methods. However, without having a reliable
objective measure to detect banding, improving dithering
or debanding efforts are quite cumbersome and direction-
less. Therefore, the industry is in urgent need of innovative
approaches that are able to detect, control, and remove/
reduce banding in an automated fashion.
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Sample image of visual banding effect (in the sky

region).

Automatic or objective image/video quality assess-
ment (IQA/VQA) has been a highly active topic in the
past two decades. However, popular IQA/VQA methods
such as peak signal to noise ration (PSNR),! structural
similarity index (SSIM),?> multi-scale SSIM (MS-
SSIM),> SSIMPLUS,* and Video Multimethod Assess-
ment Fusion (VMAF),’ often require full access to a
pristine reference when assessing a test image or video—
and pristine references are rarely available in real-world
testing environments. Moreover, although the quality
maps created by SSIM types of approaches®™*
successfully capture local banding artifacts, the overall
assessment of these approaches mixes all visual distor-
tion types together and there is no simple mechanism
to single out the banding effect. Therefore, it is desir-
able to develop novel IQA/VQA methods dedicated to
detecting and assessing banding without access to a
pristine-quality original image/video as a reference.

Recently, two substantially different types of
approaches have shown notable success at banding
detection. The first is based on the domain knowledge
gained through deep and thorough understanding of
the human visual system (HVS) and the video acqui-
sition, production, distribution, and display processes.
Computational models derived from such domain

often

knowledge are then combined to construct an overall
banding detection and assessment model.®’

In contrast to the first type of domain knowledge-
driven methods, the second type of approaches are
data-driven, with no or little domain knowledge
assumed. Instead, a large number of images/videos and
their ground-truth labels (with or without banding) are
collected, and machine learning methods are then used
to train black-box models such as the deep neural net-
works (DNNs) using the image/video dataset, so that
the learned model may make good banding predictions
on unseen image/video content.

There is rich literature on computational modeling of
HVS characteristics and the individual components
in the sophisticated video acquisition, production,

distribution, and display processes. Knowledge-driven
banding detection methods select relevant models and
combine them in a systematic way, so as to produce a
prediction of the perceived banding effect.

A knowledge-driven method?® is illustrated in Fig. 2,
where the input is an image or a video frame at the pixel
level, and the outputs are a banding score together with
a banding map. The banding score denotes the overall
level of perceived banding by considering two impor-
tant factors: banding spread and banding strength. The
spread of banding impairment impacts viewing experi-
ence but does not solely represent banding annoyance.
The contrast sensitivity of the HVS varies based on
multiple signal components and viewing conditions,
and thus not every banded edge or false contour is per-
ceived equally. The severity of banding is captured by
the banding strength component. In other words, the
goal here is to detect abrupt local activities in smooth
image regions and then analyze the visibility of such
activities from the perspectives of HVS characteristics.

Pixels that correspond to abrupt activities deemed
visible as banding are then marked, which collectively
constitute a banding map of the image or video frame.
The banding map illustrates the presence of banding
impairment in an image or a video frame and does not
reflect the banding strength. Examples of such band-
ing maps are shown in Fig. 3 (right), where the band-
ing artifacts are highlighted by the white pixels. It
appears that this knowledge-driven approach not only
detects banding, but also precisely localizes the banding
impairment at pixel precision.

Banding regions may be determined by pixels in the
image or video frame that have significant local signal
activity, while the signal activity in a majority of its sur-
rounding regions is not significant. Therefore, classify-
ing pixels into significant and nonsignificant categories
is the first step in detecting banding impairment. To
classify pixels, a significant threshold is determined
based on the characteristics of HVS as well as a series of
signal and system properties. Figure 4 depicts the work-
flow of marking pixels based on their signal activity.

Determining the significance threshold in Fig. 4 is
the key to detecting banding impairment. It requires a
deep understanding of the HVS properties such as the
contrast sensitivity function (CSF)? and various visual
masking effects.'’

Figure 5 shows how the significance threshold is
generated, starting with HVS modeling, and followed
by adjustments based on important video workflow and
display factors. Banding is a local activity in smooth
image regions that is visible under certain conditions
and viewing environments. Therefore, not only signal
properties, but also display devices and viewing condi-
tions affect perceived banding.

Modeling CSF and visual masking of the HVS pro-
vides a starting point in determining the significance



threshold, which would need to be tuned further to
determine precisely the visibility of banding as shown in
Fig. 5. The CSFs are typically derived based on psycho-
physical studies on the visibility of patterns with vary-
ing luminance levels and spatial frequency.” Chroma
component has a significant impact on the visibility of
a signal contrast,'! and may be used to adjust the ini-
tial significance threshold. SDR is often interpreted
as the ratio of the brightest to the darkest luminance.
Different opto-electrical transfer functions (OETFs)
and electro-optical transfer functions (EOTFs) are
designed to accommodate signals with standard and
HDR using certain bit depths, that is, 8 and 10 for
SDR videos and 10 and 12 for HDR videos. The bit
depth of the content determines signal precision and in

Image or Video Frame

|

Decomposing into Luma and
Chroma Components
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Computing Banding Strength

! !
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Banding Strength Banding Map

Computing Banding Strength

Diagram of a knowledge-driven method.

Sample images and banding maps created by
knowledge-driven method.
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conjunction with transfer functions impacts the visibil-
ity of banding impairment and suggests adjustments to
the significance threshold. Further adjustments to the
significance threshold may also be required based on
the maximum and minimum values of contents and the
capabilities of display devices in producing an adequate
range of luminance that is needed to avoid banding.
When all these content, perceptual, chroma, bit-
depth, transfer function, and display factors are prop-
erly modeled, a precise prediction of visual banding
may be achieved. Recently, technologies following this
path have emerged and enjoyed growing adoption. The
advantages of such knowledge-driven approaches are

Human Visual System (HVS) Model

v

Significance Threshold

v

Adjustment by Pixel Chroma Information

v

Adjustment by Bit-Depth of SDR and HDR
Content

v

Adjustment by OETF and EOTF in
Acquisition and Display

v

Adjustment by Maximum, Minimum, Mean
Luminance of Image/Video Content

v

Adjustment by Luminance Range of
Display Device

Significance Threshold

Computation and adjustment of significance
threshold factors.

Image or
Video Frame

Computing Local
Signal Activity

Determining
Significance Threshold

Signal with
Significant

—> Classification HERR

—> Signal with
Non-Significant
Activity

Classification of local signals based on an activity threshold.
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not only the high pixel-precision accuracy (that allows
for the creation of banding maps) and low computational
complexity, but also the high explainability—mean-
ing that when banding happens, a deep investigation is
plausible to find the cause of banding and then local-
ize the problem to be fixed. The disadvantage of this
approach is mainly in the difficulty of the modeling pro-
cess itself, as precise models of the contributing factors
are difficult to develop and parameters of such models
are hard to calibrate.

Machine
approaches, have attracted a great deal of attention in
recent years and have achieved remarkable success in

learning, and especially deep learning

many application areas. These approaches are generally
data-driven, with black-box models being trained by
data samples. When these data samples are sufficiently
representative of the real-world data distribution, the
trained model may be strong enough to make good pre-
dictions on novel data samples unseen in the training
dataset. The data-driven approach becomes a desirable
option in the case of visual banding detection because
it avoids the difficulty in developing and calibrating
knowledge-driven models.

The first step in building a deep learning-based
method is to obtain “big data,” that is, to construct a
large-scale dataset for training, validation, and test-
ing. Fortunately, such datasets have emerged recently.
A dataset has been constructed,'!? which is composed
of nearly 17,000 image patches, together with their
ground-truth labels, that is, each image patch has been
labeled to be either containing or not containing band-
ing. This allows us to train a DNN, more precisely a
convolutional neural network (CNN), to classify a
given image patch as either with or without banding in
an end-to-end manner. Such a method is end-to-end
because the DNN takes a raw image patch of pixels
as input and directly produces a classification result
as output. As such, the feature extraction process and
the classifier are trained or optimized altogether (as
opposed to being constructed separately in traditional
image classification methods) by learning from data
samples. By doing so, a model is constructed with no

explicit domain knowledge. In other words, all knowl-
edge is learned from data and stored in the weights of
the trained CNN.

Figure 6 shows a diagram of how a DNN-based
banding patch classifier may be applied to assess the
visual banding of a given image or video frame.'” Image
patches are first extracted from the test image using a
sliding window that moves pixel by pixel (or a larger
stripe when the computational cost is a concern) across
the image space. The extracted patches are then fed
into the DNN-based banding patch classifier.

The DNN is typically implemented using a CNN
structure, which contains multiple convolutional layers,
followed by a fully connected neural network. In each
convolutional layer, there are multiple linear kernels
that convolve with the input signal, followed by activa-
tion and pooling processes. The outcome of the layer is
considered intermediate features that are subsequently
taken as the input to the next layer. Due to the pooling
process, the number of features reduces over the lay-
ers. At the starting point of the fully connected layer,
the features are aligned into a vector, which is fed into
a neural network of multiple layers of nodes and with
the full connection between all nodes of adjacent layers.
The final output of the fully connected layers produces
the classification results. Once the CNN architecture is
constructed, all that remains is to determine the param-
eters (including kernel weights in the convolutional lay-
ers and the connection weights in the fully connected
layers) at each layer. This is achieved by a training pro-
cess, in which ground-truth outputs are compared with
the CNN output and the errors are back-propagated
and used to adjust the weights in the CNN. When we
have sufficient data samples for training, the CNN will
converge to a stage that may make accurate classifica-
tion results. The classification results obtained for indi-
vidual local image patches through the CNN classifier
are laid out spatially. They are then aggregated with
predefined smoothness constraints into two outcomes,
as shown in Fig. 6. The first is a scalar frame-level
banding score for the whole test image and the second
is a pixel-level banding map.

Sample images and their corresponding DNN-based
banding scores and banding maps are shown in Fig. 7.
Figure 7(a), (c), and (e) have ascending levels of visual
banding, which are well reflected by the banding scores.

patches

test image

Patch

. —
Iﬁ‘% DNN Banding Spatial
; Extraction Patch Classifier Aggregation
: J -

frame-level

tch labels
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~ |

A

pixel-level
banding map

Diagram of DNN-based visual banding assessment.
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(A) IMAGE WITH BANDING

(C) TMAGE WITH BANDING

(E) IMAGE WITH BANDING

——

(B) BANDING SCORE — 20)

(D) BANDING SCORE = 67

(F) BANDING SCORE = 94

Sample images and banding maps created by DNN method. (a) Image with banding.
(b) Banding score = 20. (c) Image with banding. (d) Banding score = 67. (e) Image with banding.

(f) Banding score = 94.

The banding maps created by the smoothed local patch
level banding assessment are given in Fig. 7(b), (d), and
(). It is interesting to compare the banding maps cre-
ated by the knowledge-driven approach and the DNN-
based data-driven approach, as exemplified by Figs. 3
and 7, respectively. Both maps offer good predictions
on the existence and the spatial locations of banding.
The spatial information is very important, especially for
subsequent methods that may be used to fix or reduce
the banding problem. Comparatively, the maps created
by the knowledge-driven method give much more pre-
cise localization of banding at the pixel level.

The advantage of the data-driven approach is mainly
in the alleviation of the necessity to fully comprehend
the domain knowledge, which is sophisticated and
evolving over time. On the other hand, its disadvantages
are manifold. First, it relies heavily on the quality and
quantity of training data. The training sample images
need to cover all test cases and the labels assigned
to these images need to be very accurate. In general,
the behavior of CNN models is difficult to predict on
novel data samples, especially when the data samples
contain novel content, distortion type, or distortion
combinations. This becomes a major issue when the
setup of the video acquisition, production, distribu-
tion, and display workflow changes, in which case we
often need to collect new data and retrain the DNN

model. Second, the quality prediction results may not
be as precise as knowledge-driven models, as demon-
strated by the comparison of banding maps between
Figs. 3 and 7. Third, the deployment of DNN models
in practical systems may demand high computational
and memory resources, especially when the use of the
model requires precise localization and diagnosis, such
as generating the banding maps as shown in Fig. 7, in
which the DNN patch classifier needs to be applied to
all sliding windows. Nevertheless, significant progress
has been made in the past decade on accelerating DNN
performance through advanced hardware and software
design. Although the training process is usually time-
consuming, once the model is trained, the application
of the trained model in real-world testing may be made
very fast, especially when localized assessment such as
the production of banding maps is not required.

Despite the exciting progress made in the past decades
on banding detection and reduction, there are still sig-
nificant gaps in practice. Some of the root causes of
these gaps are summarized as follows.

m First, there is no definite way to differentiate the real
contours in the video content and the false contours
of banding. Contours of various types are exhibited
in real-world videos: some are from camera acquisi-
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tion of the visual world, and some are artificial, for

example, in animation and computer screen content.

How to reliably and efficiently differentiate them

remains a challenging problem.

m Second, while it is proved that dithering does reduce
banding, there is a dilemma between banding reduc-
tion and preserving fine details in an image, because
dithering involves adding noise to an image, and
noise reduces the visibility of fine texture details.
This dilemma becomes even stronger with UHD/
HDR/WCG content, which is supposed to bring in
finer details than SDR content of the lower resolution
and smaller color gamut, but the details embedded in
deeper depth bit-planes are even more sensitive to
noise contamination. Furthermore, the noise in the
dithered content makes video encoding more diffi-
cult, as the noisy pixels consume a large number of
bits to encode, leaving much fewer bits for true fine
details of the original content.

m Third, there has been a debate about the objective
of video distribution—whether we should aim for
the preservation of the creative intent of the content
producers or for creating appealing visual results for
the end viewers. It is important to be aware that
these two goals may not always align. If preserving
the creative intent is the goal, then techniques such
as dithering or preprocessing-based banding reduc-
tion are problematic, because they purposely change
the content.

All of these are intertwined with the never-ending
progress of camera and display technologies, and the
recent development of scene-adaptive and device-adap-
tive HDR/WCG processing in the new HDR standards
such as HDR10+ and Dolby vision. Consequently,
banding detection and reduction will remain an open
problem in the future and will evolve with the technol-
ogy front of the digital video industry.

In this article, we focus on the banding effect, an
annoying visual artifact that appears in all stages of the
life cycle of digital videos and that has been drawing an
increasing amount of attention with the recent grow-
ing popularity of UHD/HDR/WCG video content.
We discuss the technical details of two promising but
substantially different types of approaches for banding
detection—knowledge-driven approaches that are built
upon deep understandings of the HVS and each compo-
nent in the video acquisition, production, distribution,
and display workflows, and data-driven approaches that
learn to detect banding by training DNN models with
big data of labeled image samples. Our experiments and
analysis demonstrate promising results and predictions
using both the mentioned frameworks.
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