MOTION IMAGING JOURNAL

Covering Emerging Technologies for the Global Media Community

APPLICATIONS/PRACTICES

Server-Side Segment Selection for Low-Latency
Streaming—>54S

By Guillaume Bichot and Nicolas Le Scouarnec

Introducgao:

No universo OTT, a baixa laténcia desafia a estimativa de largura de banda feita pelos dispositivos ou players, que se baseiam
nos sistemas ABR atuais. Porém se a baixa laténcia quebrar essa confianga da estimativa fornecida por esses dispositivos, toda
a qualidade de experiéncia do usuario (QOE) vai por agua a baixo. No presente artigo vamos ver como um conjunto de recursos
combinados pode garantir tanto a estimativa fornecida pelos dispositivos quanto a QOE sejam preservadas.

Senhoras e Senhores apresento-vos o Server-Side Segment Selection for streaming-S4S, ou se o traduzirmos livremente
como Selegao de Segmento do lado do Servidor de Streaming-S4S, que permite que os dispositivos interajam com um servidor
habilitado para S4S garantindo, assim, uma melhora da experiéncia geral. Artigo obrigatério para todos que desejam entender
como melhorar a QOE diante dos desafios da Baixa Laténcia de Rede. Boa Leitura!

Tom Jones Moreira

Abstract

Quer-the-top (OTT) streaming growth is driven by the
increasing number of wireless connected devices such as
tablets and phones. An enabler for using these devices is
adaprive bitrate (ABR) streaming thar allows devices
to select at each moment the stream quality that best fits
the available bandwidth. The overall experience is highly
dependent on the bandwidth estimation. The current
approach to bandwidth estimation in HTTP-based ABR
plavers is challenged by the evolu-
tion toward low-latency protocols
(DASH CTE—Dynamic Adap-
tive Streaming over HTTP—
Chunked Transfer Encoding) or
(HLS LL—HTTP Live Stream-
ing—Low-Latency), which result
in micro-burst of traffic. Indeed,
estimation at the client side, at the
HTTP level, relies on the assump-
non that a relatively large seg-
ment of data is available and can
be sent at the link speed, which s
not the case anymore with low-
latency protocols. To address this
issue, we propose a novel scheme
Server-Side Segment Selection for streaming (§48), which
allows players to interact with an S4S-enabled server to
improve the overall experience. First, bandwidth estima-
tion 15 done at the server side, using rransporr’s congestion
control sender-side stats, leading to more precise estimartes
even in the presence of small burst, especially when using
modern congestion control algorithms such as Boitleneck
Bandwidth and Round-trip propagation time (BBR) or
Performance-orientated Congestion Control (PCC). Sec-
ond, we define a protocol for allowing the network to control
the bandwidth versus quality tradeoff.

84S is a technology compliant
with ABR streaming that forces
the bitrate selection based on
its own bandwidth estimation.
Because it performs the

bandwidth estimation on the
server, $48 is not constrained
by the player environment
(sandbox, API) and can
inherently provide a more
accurate estimation.

Keywords
Low-latency adaptive bitrate (ABR) streaming for live
content

Introduction

daptive bitrate (ABR) streaming is a streaming
technology that is prevalent today when stream-
ing video-on-demand (VOD) and live content as
popularized with protocols such as HTTP Live
Streaming (HLS) from Apple and Dynamic Adaptive
Streaming over HT'TP (DASH),
a standard specification from the
Motion Picture Experts Group
(MPEG) consortium. These
protocols are converging in terms
of the content format [e.g., frag-
mented MPEG MP4/Common
Media Application Format
(CMAF)]. Their differences lie
mostly in the way they write and
manage the manifest/playlist file.
Beyond these two major
protocols, there are numerous
proprietary protocols more or less
derived from the previous ones.

Fundamentally, adopting
the client/server paradigm, and HTTP-based ABR
protocol gives the control to the terminal (more spe-
cifically to the player). It has some obvious advan-
tages: the server can be a dumb file server; the player
selects the video-bitrate based partly on the function
of its status (buffer level) and the capacity of the host
(codec, screen resolution).

However, it has also a serious drawback: the player nei-
ther knows the network environment nor cares about it. Its
bitrate selection strategy is only driven by a heuristic for:
(1) avoiding buffer starving, (2) reducing quality switches,
and (3) maximizing the video bitrate. Consequently, a
player tends to be greedy; it downloads in advance, requests
video segments for which the bitrate exceeds the maximum
bottleneck bandwidth, and possibly operates multiple con-
current Transmission Control Protocol (T CP) connections.
It can definitively impact neighboring players even if the

bitrate selection strategy is identical. This is particularly true
when the network and possibly the content delivery net-
work (CDN) are overloaded in the case of, for example,
very popular live orVOD events.

Furthermore, to properly proceed with its heuristic,
the player needs to rely on a good network-bandwidth
estimation. It is, however, known that this evaluation is
not always accurate nor consistent across platforms or
software versions and it is very challenging when talking
about low latency.

ABR streaming has been created for mobile hand-
sets that are typically attached to the network through a
shared medium (Wi-Fi, Cellular). The bandwidth esti-
mation drawbacks mentioned earlier are exacerbated
when the players are in competition sharing the same
bottleneck. As discussed in Bichot et al.,! the bitrate
selection may become unstable and/or unfair because
the concurrent players ignore each other and, as ABR
streaming is bursty by nature, the bandwidth estima-
tion can be wrong.

It is typical in VOD or live streaming for the player
to manage a buffer of 30 sec while, in low-latency
streaming (about 5 sec glass to glass), the player can-
not rely heavily on its buffer anymore. Consequently,
the bandwidth estimation and prediction become even
more prevalent.

Recently, new methods have been published for
allowing low-latency ABR streaming based on the sup-
port of the MPEG-CMAF? format wherein a typical
video segment/file (e.g., 2 sec) is fragmented into a set
of chunks having a duration of tens to hundreds of mil-
liseconds generated at the rhythm of the encoding and
transported along the delivery chain without buffering
up to the terminal. However, it has been shown®? that
bandwidth estimation in that contextis very challenging.

Low latency is required for video live streaming. In
live streaming, CDNs are exposed to overloading espe-
cially when a content is popular. The number of simul-
taneous connections may increase significantly putting
the CDN at risk, the CDN being unable to deliver such
amounts of data. There is no practical and efficient way
to mitigate such overload. A simplistic approach would
be to overprovision the CDN/network, while a more
reasonable approach is to force the player somehow
to consider a maximum bitrate. This is possible today
through modifying the manifest/playlist file but there is
no guarantee that the manifest file will be downloaded
by the players and if so in the [almost] same time.

It turns out that the service operator has no control
over the player behavior and in particular regarding
the video bitrate selection strategy. Doing so, however,
would permit addressing various use cases where con-
trolling finely, dynamically, and in a consistent way the
video streaming bitrate provides a more efficient usage
of the bandwidth for a better quality of experience.

Our contribution is Server-Side Segment Selection
for streaming (S48S), a technology enabling various fea-
tures that solve or mitigate the aforementioned draw-
backs. It enables the service operator to finely control
the bandwidth versus quality tradeoff in a consistent
way. While our previous work' presented the general
benefits of Server-Side Segment selection, this paper
addresses more specifically the case of live streaming
and presents the set of features that make low-latency
streaming possible in a tough environment.

Others have experimented server-side approaches in
controlling ABR streaming*™® although none of them
have combined a server-side bandwidth estimation with
server-side bitrate selection for addressing low-latency
HTTP-based adaptive streaming.

$4S: Controlling the Streaming Experience
From the Server Side

S48 is a technology compliant with ABR streaming that
forces the bitrate selection based on its own bandwidth
estimation. Because it performs the bandwidth estima-
tion on the server, S48S is not constrained by the player
environment (sandbox, API) and can inherently pro-
vide a more accurate estimation.

Transparent Mode

In this mode of operation, the S4S-capable server
selects the bitrate and delivers self-initializing seg-
ments on [player] request. The strength of this mode
is that it works with many existing players without any
changes, making it deployable on servers as of today
without changes on the client sides. The player is not
aware of the S48 presence; it behaves similarly to con-
ventional ABR, attempting to control the quality/bitrate
selection. A self-initializing segment (compatible with
MPEG-DASH") is a media segment with a prepended
initializing segment. The player supporting the self-
initializing segments must be capable of parsing the
CMAF header information present at the beginning of
the returned [self-initialized] segment.

In addition to the self-initializing segments, the S48
server relies on specific uniform resource identifiers
(URIs) declared on the manifest, preserving the state-
less nature of the S48 server. Again, this is fully com-
patible with the MPEG-DASH"* standard and therefore
transparent to the terminal.

The server always decides whether to perform the
quality/bitrate selection on the requested segment or sim-
ply fulfills the player’s selection indicated in the request.

Last but not least, the server works with HT TP/2.
While in a previous work,! we presented the S48 solu-
tion as workable over HTTP 1.1, despite a loss of accu-
racy, we do recommend HTTP/2 and future versions
as it avoids dealing with several T'CP connections per
player, providing a more stable and accurate frame-
work, which is particularly important when targeting
low-latency streaming in wireless/mobile environments.

SMPTE=—

—SMPTE

Non-Transparent Mode

Because it lacks client-side information (buffer level,
current resolution), in transparent mode, the server-
side decision algorithm may be suboptimal in some
contexts and can be improved by adding cooperation
between the server and the player.

When the player is S4S aware, there is an exchange
of information with the server for increasing the quality
of experience. The information is exchanged relying on
custom HTTP headers for example. This section gives
an overview of such a protocol.

The server is capable of working in two sub-modes.
The server-driven mode is about the server being
authoritative and controlling tightly the streaming ses-
sion quality/bitrate switching. The server-driven mode
requires the support of self-initializing segments as with
the transparent mode.

The client must indicate, in all the requests, the list
of supported representations (bandwidth and absolute
URL of the segment to download). In addition, the
player must join the audio and video buffer levels as well
as their status (pause, play, stall).

The server must indicate in all responses, the rep-
resentation (i.e., the selected bitrate) currently served.
In addition, it must join in all media response its band-
width estimation and maximum bitrate. The maximum
bitrate is understood by the client as the maximum
allowed bitrate (or available bandwidth) imposed by the
network for various reasons (fair bandwidth sharing,
decrease the load on the CDN). This is particularly use-
ful in the second mode: the server-assisted mode.

In the server-assisted mode, the client is basically on
its own regarding quality/bitrate selection while it can/
must use server information as explained further in the
paper. The server-assisted mode allows the player to select
the bitrate relying on the server information, increasing
the accuracy of the player heuristic. However, there is no
guarantee that the adaptation is uniform and it precludes a
tight and instantaneous limitation of the bandwidth usage.
The operator and thus the server always decides to which
mode the client should comply. The mode can be selected
for the entire session (e.g., on a client/player basis) or can
possibly change at any time during a session.

Case of Low Latency

Typical latency for live streaming may be about 30 sec
or more. The ABR algorithm relies on the buffer level
as well as available bandwidth estimation. Low-latency
streaming targets must approach live latency as pro-
vided by an IPTYV service that is about 5 sec glass to
glass. With such a target, the player’s buffer is very lim-
ited (a few seconds), precluding bulky burst transmis-
sions. In other words, the server can no longer transmit
a segment of several seconds as a bulky burst of bits but
must smooth the transmission, sending more regular,
smaller bursts. A segment is split into chunks, ranging

from a video frame duration (e.g., 40 msec) to hundreds
of milliseconds.

These chunks are typically generated by the pack-
ager. Ideally, they contain a structure of video frames
without forward references (i.e., the pictures can be
decoded immediately).

The streaming must be as regular as possible. DVB
has published a low-latency extension to the DVB-DASH
specification' that is also mostly adopted by the Dash-IF
consortium and will be published as part of their next
implementation guideline release.!! The specification
relies on the MPEG-CMAF? format combined with
HTTP CTE (Chunk Transfer Encoding). With such a
transmission mode, the time to download a segment is
close to the segment’s duration, which makes a player’s
bandwidth evaluation based on HTTP transactions
roughly equivalent to the segment encoding bitrate. This
is problematic for most of the players. Because they can-
not estimate the maximum available bandwidth properly,
they stick to one quality/bitrate only.

How It Is Addressed Today

A few attempts have been made to solve that problem.
Bentaleb et al.®> proposed Adaptive Streaming with
Chunked Transfer Encoding (ACTE), a throughput-
based ABR strategy relying on bandwidth prediction
based on recursive linear regression (RLS), a method
depending on bandwidth estimation. The latter does
not work properly, especially when chunks are small
and thus interchunk times tend to be significant. This
is due to the difficulty in identifying chunk boundaries.
It is worth noting that the best scheme (active probing)
is the one that provides the best results but suffers from
the inherent-induced load over the medium.

As part of the MultiMedia Systems Conference
(MMSys) grand challenge,'? Lim et al.!® went a step fur-
ther, relying on an unsupervised learning (self-organizing
maps)-based algorithm for bitrate selection. The features
are 2 QOE modeling (a combination of the typical met-
rics that characterize an ABR streaming session: bitrate
selected, number of bitrate switches, rebuffering time,
live latency, and playback speed), a throughput estimate,
the buffer occupancy, and the latency. They increased
the efficiency of the bandwidth estimation proposed in
Ref. 3 through a better detection of the chunk boundar-
ies but with adding a dependency on the video format.

Karagkioules et al.'"* proposed an online learning
method based on the online convex optimization (OCQO)
theory wherein the throughput estimation serves in
computing the adversary function.

Karagkioules et al.'"* and Lim et al.'” were the winner
and runner-up, respectively, of the grand challenge.'?
Both exhibited similar results although they'® had a
better stall duration result (divided by 2) especially for
the “cascade” network profile (the available bandwidth
varies every 15-20 sec) despite a number of quality
switches that is two to four times greater.

The challenge conditions (segment duration of
0.5 sec, chunk duration of 33 msec, RTT =0) make the
experiment results inapplicable to typical live “broad-
cast” programs.

And 545?

In low latency, it is important to first tackle the play-
er’s rebuffering (stalling) before anything else. Because
the buffer is small (a few seconds) and corresponds to
a known latency target (e.g., 3 sec), the bitrate selec-
tion should follow some form of adaptive increase,
multiplicative decrease (AIMD) schema. However, it is
important to note that a player/client involved in low-
latency streaming is inherently weaker regarding con-
current players. This is because in low latency, there
are much more “holes” because interchunk delivery
time slots provide more opportunities for greedy players
(involved, e.g., in VOD streaming where the buffer can
store several tens of seconds) to eat the bandwidth.

S4S supports any form of low-complexity bitrate
selection strategy/adaptation and provides the advan-
tage of being consistent across platforms and players.
Being at the server side, it enables first a better estimate
of the network/transport behavior.

S48 provides an accurate throughput measurement
provided by the congestion control module attached
to the transport layer. Our first implementation was
based on bottleneck bandwidth and RTT (BBR) that
is supported by both TCP and quick UDP internet
connections (QUIC). BBR has a dedicated maximum
bottleneck bandwidth evaluation mechanism that is
reactive on the rising edge (i.e., when the throughput

goes up significantly) but may be relatively slow on the
falling edge (i.e., when the throughout goes down sig-
nificantly). This is because the BBR bandwidth eval-
uation is based on the maximum delivery rate over a
sliding time window that is itself based on the RTT.

The plot shown in Fig. 1 illustrates the case. It is a
low-latency streaming session over HTTP2/TCP with
BBR activated. The bottleneck bandwidth variation set-
up was the following: min bw = 1200 kb/s, max bw =
3500 kb/s, number of steps = 3, and step duration = 20
sec. The RTT was set to 180 msec that has an impact
on the BBR bandwidth evaluation window as explained
earlier. The green curve is the raw BBR bandwidth met-
ric. One can see that over the falling edge, the BBR_bw
remains high and falls down a few seconds late. When
the video quality/bitrate is selected based on this metric
only, the player may be forced to switch too late and may
experience a video freeze.

The mitigation consists in using the delivery rate
information (provided by the BBR module through a
system API) for detecting a falling edge and for com-
puting the bandwidth estimation allowing a quicker
reaction (blue curve in the figure). The orange dash
curve corresponds to the video quality/bitrate selected
by the S48 server.

Note that the blue curve shows a significantly smaller
measured bandwidth. This is because our bandwidth
estimation takes into account (is reduced by) the band-
width consumed by the audio (roughly 130 kb/sec).

Figure 2 illustrates a simple test (rtt = 180 msec) with
two players DASH-IF 3.1.0. Three substreams/bitrates
are available (800 kb/s, 1200 kb/s, and 2500 kb/s). On
the left side, the player is running in low latency (target
3 sec) and the bitrate selection is done by the player (the
dashed orange curve). On the right side, the player con-
trols the bitrate selection and the low latency is not acti-
vated. However, the content is served through HTTP
CTE. No stall is observed. However, the player on its
own (right side) estimates the bandwidth according to
the video bitrate and is therefore unable to switch to
higher bitrate.

FIGURE 1. Compensating BBR slow falling edge detection.

SMPTE=—

—SMPTE

FIGURE 2. S4S streaming in low latency versus nonlive streaming over HTTP CTE.

The next plot (Fig. 3) illustrates the test with a
smaller rtt (30 msec) with, on the right side, the player,
controlling the bitrate selection, having the low-latency
feature enabled. The player is capable of switching, but
it frequently selects the wrong bitrate, resulting in stalls.
Note that the throughput estimation computed by the
Dash-IF player appears to be a little strange.

The last plot (Fig. 4) illustrates the case where two
sessions share the same network and therefore band-
width. The maximum bottleneck bandwidth has been
doubled for theoretically allowing a fair share of it. On
the right side, the player is streaming from a conven-
tional DASH server in the VOD mode (without low
latency and without the content being delivered through
HTTP CTE). On the left side, the other player is run-
ning in low latency and controlled by the S$4S server.
The rtt is fixed to 30 msec. One can see that the stream-
ing is more challenging for S48 than the previous cases
as the right-side player tends to be greedy relying on
a rather large buffer (10-20 sec of buffer), whereas on
the left side, the player keeps its buffer level around
3 sec. Yet S48 does a good job maintaining its buffer

level without stalling and still delivering the highest
bitrate possible most of the time.

What About the Chunk Duration?

There is an important network feature to be considered
that is the round-trip time (RTT). It has been obfuscated
in the grand challenge'? as the tests run locally (i.e., within
the same machine) without any emulation of the RTT).
The RTT can vary in real life (physical transmission time,
bottlenecks). Assuming that the CMAF chunk is a bulk
transfer unit, its size must be large enough to accurately
estimate the maximum available bandwidth. Without
proper care, the throughput estimation could be limited
by the RTT and therefore preclude bitrate switching at
the right time.

One solution to this problem is to have the delivery
chain support dynamic chunk size, which computes the
chunk size as a function of a maximum RTT between
the cache server and the terminal. With S48, the cache
server evaluates the RTT and feeds a process that com-
putes the minimum bulk transfer size enabling the
estimation of the available bandwidth as large as the
“biggest” representation (i.e., the one that is associated
with the biggest bitrate).

FIGURE 3. S4S streaming in low latency versus convention live streaming (with low latency enabled).

FIGURE 4. Live low-latency streaming competing with greedy VOD streaming.

Assuming N sub-streams (1,..., N), each associ-
ated with an average bitrate B, the minimum transfer
bulk duration (mTBD) for the sub-stream i is defined
according to the following:

C-max(BD -.BN)-mR'I'T

mTBD; = 1
B, ey
with
1 sub-stream
mRTT: maximum RTT between the cache

server and the terminal

Bi: Bitrate (in bits per second) associated with
sub-stream 7

N: Maximum number of representations (quality
sub-streams)

C: constant allowing to add a margin that compen-
sates rough mRTT estimation as well as B as an average
bitrate indication. Note that this is precisely the transmis-
sion time between the server and the terminal that mat-
ters here and not exactly the round-trip time. Therefore,
mRTT can be possibly halved considering that the RTT is
equally distributed among the uplink and downlink.

The process then builds the bulk transfer unit on the
fly by concatenating m chunk units together that verify
the following:

Jj=m J=n1+1
> . Cdi<mTBDi< Y Cdj @
j=1 =1
with:
j chunk j

Cd: Chunk duration in seconds

Conclusion

Low latency challenges bandwidth estimation done
at the player side in current ABR systems, preventing
good user experience. A server-side approach relying
on bandwidth estimation provided by modern trans-
port congestion control (such as BBR) combined with a
set of discussed features successfully prevented stalling
while allowing high bitrate streaming.

We have shown the importance of keeping the RTT
as low as possible. This is beneficial for streaming, in
general, and for low-latency streaming and therefore
S§4S, in particular. This is why we are developing a
cache infrastructure/framework that places our cache
servers in locations with low and consistent RTTs.

Because such technology is better evaluated statisti-
cally, as the next step, we plan to experiment with the
8§48 solution under diverse conditions met on the field
via an A/B testing framework.

References

1. G. Bichot, P.]J. Guery, and N. Le Scouarnec, “How to Optimize
ABR Video Delivery with Server-Side Quality Control,” Proc.
2020 NAB Broadcast Engineering and Information Technology Conf.,
May 13, 2020.

2. International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC) 23000-19, “Information
Technology—Multimedia Application Format (MPEG-A)—Part
19: Common Media Application Format (CMAF) for Segmented
Media.”

3. A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann,
“Bandwidth Prediction in Low-Latency Chunked Streaming,”
NOSSDAV’19, Amherst, MA, Jun. 21, 2019.

4. K. Khan and W. Goodbridge, “Server-Based and Network-
Assisted Solutions for Adaptive Video Streaming,” Inr. J. Adv.
Nerworking Appl., 09(03): 3432-3442, 2017.

5. H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive
Video Streaming with Pensieve,” SIGCOMM °17, Los Angeles,
CA, USA, 2017.

6. S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turk,
“QoE-Driven Rate Adaptation Heuristic for Fair Adaptive Video
Streaming,” ACM Trans. Multimedia Comput. Commun. Article 28,
Vol. 12 (2), Oct. 2015.

7. A. El Essaili, D. Schroeder, D. Staehle, M. Shehada,
W. Kellerer, E. Steinbach, “Quality-of-Experience Driven
Adaptive HT TP Media Delivery,” IEEE Int. Conf. Commun. (ICC
2013), Jun. 2013.

8. R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang,
“QDASH: A QoE-Aware DASH System,” MMS8ys’12, Chapel
Hill, NC, Feb. 22-24, 2012.

9. L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback Control
for Adaptive Live Video Streaming,” Proc. Second Annu. ACM Conf.
Mudtimedia Syst. (MMSys’11), ACM, pp. 145-156, Feb. 2011.

10. European Telecommunications Standards Institute (ETSI)
TS 103 285 V1.3.1 (2020-02), Digital Video Broadcasting (DVB);

SMPTE=—

—SMPTE

MPEG-DASH Profile for Transport of ISO BMFF Based DVB
Services over IP Based Networks.

11. “Guideline for Implementation: DASH-IF Interoperability
Points. Change Request for Low Latency Modes for Dash.” [Online].
Available:https://dashif.org/guidelines/#agreed-crs-for-next-version
12. “Grand Challenge on Adaptation Algorithms for Near-
Second Latency,” ACM MMSys, 2020.

13. M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R.
Zimmermann, “When They Go High, We Go Low: Low-Latency
Live Streaming in dash.js with LoL,” MMSys *20: Proc. 11th ACM
Multimedia Systems Conf., pp. 321-326, May 2020.

14. T. Karagkioules, R. Mekuria, D. Griffioen, and A. Wagenaar,
“Online Learning for Low-Latency Adaptive Streaming,” MMSys *20:
Proc. 11th ACM Multimedia Systems Conf., pp. 315-320, May 2020.
15. International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC) 23009, “Information
Technology—Dynamic Adaptive Streaming over HT TP (DASH).”

About the Authors

Guillaume Bichot joined Broad-
peak in August 2018 as the head of
Exploration Team with a focus on
addressing and developing innova-
tion. Prior to working at Broad-
peak, he was a principal scientist at
Technicolor and Thomson, where
he led international teams/activities
related to image and networking.

His areas of expertise include video streaming, IoT, wire-
less, broadband access, cloud networking-NFV, and virtu-
alization. He has contributed to many collaborative
projects, standardization bodies, and authored numerous
papers at industry conferences.

Nicolas Le Scouarnec is a
research engineer on the Explora-
tion Team at Broadpeak. His cur-
rent research focuses on modern
internet protocols for video stream-
ing and reliable, high-performance
CDN systems. Prior to joining

ey Broadpeak, he was a senior scien-
: “ A\ el tist in distributed systems, security,
and high-performance machine learning at Technicolor.
He holds a Ph.D. in computer science from INSA de
Rennes, Rennes, France.

SMPTE Virtual Courses

Sharpen your skills in the latest
digital media technologies

Last year, nearly 10,000 media professionals,

technologists and engineers chose our courses to

help them deepen their technical knowledge,

with 97% already planning their next SMPTE class.

That's why we're constantly expanding our
course offerings with classes on technologies
including HDR, UHD and DCP, and special focus
on transformative standards like ATSC 3.0

and ST 2110. Choose Instructor-led

courses for personal attention

and feedback, or start learning

immediately with our flexible

self-study option.

P sMPTE

View the latest offerings and register
today at smpte.org/virtual-courses

https://www.smpte.org/virtual-courses

